Clinal resistance structure and pathogen local adaptation in a serpentine flax-flax rust interaction.

نویسنده

  • Yuri P Springer
چکیده

Because disease resistance is a hallmark signature of pathogen-mediated selection pressure on hosts, studies of resistance structure (the spatial distribution of disease resistance genes among conspecific host populations) can provide valuable insights into the influence of pathogens on host evolution and spatial variation in the magnitude of their effects. To date few studies of wild plant-pathogen interactions have characterized resistance structure by sampling across the host's biogeographic range, and only a handful have paired such investigations with studies of disease levels under natural conditions. I used a greenhouse cross-inoculation experiment to characterize genetic resistance of 16 populations of California dwarf flax (Hesperolinon californicum) to attack by multiple samples of the rust fungus Melampsora lini. I documented a latitudinal cline in resistance structure, manifest across the host's biogeographic range, which mirrored almost identically a cline in infection prevalence documented through field surveys of disease in study populations. These results provide empirical evidence for clinal patterns of antagonistic selection pressure, demonstrate that such patterns can be manifest across broad biogeographic scales, and suggest that rates of disease prevalence in wild plant populations may be tightly linked to the distribution of host resistance genes. Tests for local adaptation of the fungus revealed evidence of the phenomenon (significantly greater infection in sympatric plant-fungal pairings) as well as the potential for substantial bias to be introduced into statistical analyses by spatial patterns of host resistance structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust.

The outcome of infection of individual plants by pathogenic organisms is governed by complex interactions between the host and pathogen. These interactions are the result of long-term co-evolutionary processes involving selection and counterselection between plants and their pathogens. These processes are ongoing, and occur at many spatio-temporal scales, including genes and gene products, cell...

متن کامل

Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.

Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through ...

متن کامل

Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.

Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we s...

متن کامل

Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity.

The gene-for-gene mechanism of plant disease resistance involves direct or indirect recognition of pathogen avirulence (Avr) proteins by plant resistance (R) proteins. Flax rust (Melampsora lini) AvrL567 avirulence proteins and the corresponding flax (Linum usitatissimum) L5, L6, and L7 resistance proteins interact directly. We determined the three-dimensional structures of two members of the A...

متن کامل

Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors.

Rust fungi, obligate biotrophs that cause disease and yield losses in crops such as cereals and soybean (Glycine max), obtain nutrients from the host through haustoria, which are specialized structures that develop within host cells. Resistance of flax (Linum usitatissimum) to flax rust (Melampsora lini) involves the induction of a hypersensitive cell death response at haustoria formation sites...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 61 8  شماره 

صفحات  -

تاریخ انتشار 2007